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Abstract

A general modeling framework is presented for the development of the frequency equation of a microgyroscope, which is

modeled as a suspended cantilever beam with a tip mass under general base excitation. Specifically, the beam is considered

to vibrate in all the three directions, while subjected to a base rotational motion around its longitudinal direction. This is a

common configuration utilized in many vibrating beam gyroscopes and well drilling systems. The governing equations are

derived by using the Extended Hamilton’s Principle with a general 6-dof base motion. The natural frequency equation is

then extracted in a closed-form for the case where the beam support undergoes longitudinal rotation. The effect of

substrate motions on the performance of microgyroscopes is also discussed, along with the effects of a beam-distributed

mass, a tip mass, angular accelerations, centripetal accelerations and Coriolis accelerations. The response of the system to

different inputs is studied and the response sensitivity to input parameter variations is examined. Finally, the sources of

error in the measurement of input rotational speed are investigated and identified. The results of the study demonstrate the

importance of errors, caused by cross axes inputs, on the gyroscope output measurements.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many research studies have been concentrated on the vibrations of flexible beams with different boundary
conditions and engineering applications. One of the typical models consists of a uniform flexible cantilever beam
carrying a tip mass. Antennas, rotating blades, deep well drills, and vibrating beam microgyroscopes serve as
engineering applications of such model. Among the research studies focused on developing models for the
analysis of this problem, the following can be mentioned. Bhat and Wagner [1] carried out a detailed analysis to
develop the frequency equations for a cantilever beam with tip mass. Anderson [2] developed a beam model with
asymmetric tip mass. Parnell and Cobble [3] solved the equations of a cantilever beam with end mass for different
boundary conditions and lateral forces using Laplace transformation. Laura et al. [4] derived the frequency
equations of a clamped–free beam with a finite mass at the free end, and Gürgöze [5] performed similar work for
the case in which a mass-spring system was attached to the tip mass. Most of the models developed are for cases
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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in which the beam support is stationary. The first modeling work based on the classical linear Cartesian method
was done in early 1970s [6,7]. In the analysis of these models, finite element methods with linear beam properties
were utilized. Later works adopted this method and applied it to a wide range of engineering problems.

Recent advancements in microtechnology have brought about new possibilities for manufacturing microgyro-
scopes. These devices are many times smaller than their macroscopic counterparts. Development of microgyroscopes
and MicroElectroMechanical Systems (MEMS) has generated new markets and opportunities in low cost–medium
performance of inertial systems such as useable electronic systems, automobile applications, Global Positioning
Systems, and even more recently in a wide range of military applications. Naturally, a great deal of effort is put forth
into improving their performance and increasing their range of applications [8,9]. A large portion of these efforts is
concentrated on solving production problems and eliminating undesirable results of micromachining [10–12].

Among different types of microgyroscopes, suspended vibrating ones consisting of rings, vibrating beams and
tuning forks are the most commonly used configurations of gyroscopes. The main reason behind this is the
compatibilities of their batch production procedures with today’s technology. The main part of a microgyroscope
is a cantilever supporting a mass at the end [13,14]. Increasing the tip mass will affect gyroscope’s performance by
increasing the effect of rotation rate, increasing the gyroscopic effects and reducing the effects of undesirable
Brownian noise. Microgyroscopes with a vibrating beam work because of the Coriolis acceleration induced by the
input rotation rate. If the beam has lateral (bending) oscillations, any input rotation along its longitudinal axis
will induce oscillations due to Coriolis effects in the lateral direction normal to the input oscillations. By
measuring the induced oscillation, for instance by using capacitive or piezoelectric sensors, the input rotation rate
can be measured. If the beam rotation is around the longitudinal axis only, the measurements will be accurate. In
practice, however, the device can have other rotations too, which will alter the measurements. In fact, one of the
major sources of error in microgyroscope performance is caused by the rotations of the substrate.

One of the main objectives of the current research described here is to develop a model for the analysis of a
cantilever beam with a tip mass under general support motions. The current work is motivated by the fact that
such a system is extensively used in vibrating beam gyroscopes and well drilling systems. Hence, such model
development may provide additional design information for better performance evaluation. Generally, a
gyroscope can be considered as a sensor used for measurement of rotational speed, used in a wide range of
industrial applications in navigation and control of aerial and ground vehicles.

The second objective of this research is to study the effects of different combinations of substrate motions on
the performance of the vibrating cantilever beam microgyroscope. To perform this, a beam model is constructed
and its lateral amplitudes in two directions are estimated by using the assumed mode model (AMM) expansion
as a linear combination of generalized coordinates. By using Hamilton’s principle, the system’s governing
equations are derived. By solving these equations, the effects of undesirable rotations and motions other than
input rotation on the system response can be studied. By recognizing the effects of input disturbances on system
performance, proper elimination strategies can be devised to improve microgyroscope performance.
2. Governing equations of motion in general form

To obtain the governing equations of motion of a cantilever beam with a tip mass, the Extended Hamilton’s
Principle is utilized here. The beam is considered to obey the Euler–Bernoulli beam theory with small thickness to
length ratio. In addition, the torsional vibration effects are ignored. To express the potential and kinetic energies,
three Cartesian variables ui, i ¼ 1, 2 and 3, measured in moving coordinate system, are used. Fig. 1 depicts the
beam with a concentrated mass at its free end, which is subjected to a support motion in coordinate system {ai}.

As a result of base motion, point P* on the neutral axis of beam is moved to point P. The position and
velocity of point P in the reference frame {Ai} can be expressed as

rP ¼ uP� þ rP� þ rO0 ,

_rP ¼ _rO0 þ
quP�

qt
þ xsub � ðuP� þ rP� Þ,

_rP ¼ V iai þ
qui

qt
ai þ ojaj � ðuiai þ xa1Þ, ð1Þ
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Fig. 1. The schematic of the cantilever beam with tip mass under general base motion.

M. Esmaeili et al. / Journal of Sound and Vibration 301 (2007) 146–164148
with the variables as defined in Fig. 1. In these equations, xsub (which is equal to oiai) is the rotation of the
base relative to the reference frame, and x is the position of point P in the moving coordinate system.
Simplifying the vector products used in Eq. (1), the velocities of point P can be reduced to

_rP ¼ hiai,

h1 ¼ V1 þ
qu1

qt
þ u3o2 � u2o3,

h2 ¼ V2 þ
qu2

qt
þ u1o3 � u3o1 þ xo3,

h3 ¼ V3 þ
qu3

qt
þ u2o1 � u1o2 � xo2, ð2Þ

where ai represents the ith unit vector.
Consequently, the total kinetic energy of the beam incorporating both tip and beam distributed masses can

be expressed as

T ¼
1

2

Z L

0

mT�ðx; ui;V i;oiÞdxþ
1

2
MLT�ðL; uix¼L

;Vi;oiÞ, (3)

T�ðx; ui;Vi;oiÞ ¼ h2
1 þ h2

2 þ h2
3, (4)

where m is the beam mass per unit length, and ML represents the tip mass. The beam strain (potential) energy
can also be written as

V ¼
1

2

Z L

0

EA
qu1

qx

� �2

dxþ
1

2

Z L

0

EI33
q2u2

q2x

� �2

dxþ
1

2

Z L

0

EI22
q2u3

q2x

� �2

dx, (5)

where L is the beam length. Using the Extended Hamilton’s Principle, the equations of motion of the beam
can be extracted as detailed in Appendix A and summarized here:

m �
qh1

qt
þ h2o3 � h3o2

� �
þ

q
qx

EA
qu1

qx

� �
¼ 0,

m �
qh2

qt
þ h3o1 � h1o3

� �
�

q2

qx2
EI33

q2u2

qx2

� �
¼ 0,

m �
qh3

qt
þ h1o2 � h2o1

� �
�

q2

qx2
EI22

q2u3

qx2

� �
¼ 0,



ARTICLE IN PRESS
M. Esmaeili et al. / Journal of Sound and Vibration 301 (2007) 146–164 149
�EA
qu1

qx
�ML

qh1

qt
þMLh2o3 �MLh3o2

����
x¼L

¼ 0,

q
qx

EI33
q2u2

qx2

� �
�ML

qh2

qt
þMLh3o1 �MLh1o3 þ f e2

����
x¼L

¼ 0,

q
qx

EI22
q2u3

qx2

� �
�ML

qh3

qt
þMLh1o2 �MLh2o1 þ f e3

����
x¼L

¼ 0,

EI33
q2u2

qx2

����
x¼L

¼ 0; EI22
q2u3

qx2

����
x¼L

¼ 0. ð6Þ
3. Closed-form frequency equation for base longitudinal rotation

An example case study is considered here in which the beam undergoes general vibrating motions while
subjected only to rotation around its longitudinal axis. This is a common configuration in vibrating beam
gyroscopes and deep well drilling systems. In microgyroscopes modeled as vibrating beams with tip mass, the
objective is to measure the rotation rate around longitudinal axis. Therefore, it is necessary to extract the
frequency equation and natural frequencies of the system in a closed-form, if possible. For this special case,
the values of h1, h2, and h3 defined in Eq. (2) reduce to

h1 ¼
qu1

qt
,

h2 ¼
qu2

qt
� u3o1,

h3 ¼
qu3

qt
þ u2o1. ð7Þ

Substituting these expressions into Eq. (6) yields

�m
q2u1

qt2
þ

q
qx

EA
qu1

qx

� �
¼ 0,

�m
q2u2

qt2
þ 2m

qu3

qt
o1 þmu2o2

1 �
q2

qx2
EI33

q2u2

qx2

� �
¼ 0,

�m
q2u3

qt2
� 2m

qu2

qt
o1 þmu3o2

1 �
q2

qx2
EI22

q2u3

qx2

� �
¼ 0,

�EA
qu1

qx
�ML

q2u1

qt2

����
x¼L

¼ 0,

q
qx

EI33
q2u2

qx2

� �
�ML

q
qt

qu2

qt
� u3o1

� �
þML

qu3

qt
þ u2o1

� �
o1

����
x¼L

¼ 0,

q
qx

EI22
q2u3

qx2

� �
�ML

q
qt

qu3

qt
þ u2o1

� �
�ML

qu2

qt
� u3o1

� �
o1

����
x¼L

¼ 0,

EI33
q2u2

qx2

����
x¼L

¼ 0,

EI22
q2u3

qx2

����
x¼L

¼ 0. ð8Þ

Furthermore, if the lateral stiffness of the beam in two directions is assumed to be the same and
axial strains along the beam can be ignored (when compared with the strains due to bending), the
system equations reduce to two equations coupled via gyroscopic terms plus the equations associated
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with the boundary conditions:

q4u2ðx; tÞ

qx4
þ k1

q2u2ðx; tÞ

qt2
� k2

qu3ðx; tÞ

qt
¼ 0,

q4u3ðx; tÞ

qx4
þ k1

q2u3ðx; tÞ

qt2
þ k2

qu2ðx; tÞ

qt
¼ 0,

q3u2ðL; tÞ

qx3
� rLk1

q2u2ðL; tÞ

qt2
þ rLk2

qu3ðL; tÞ

qt
¼ 0,

q2u2ðL; tÞ

qx2
¼ 0,

q3u3ðL; tÞ

qx3
� rLk1

q2u3ðL; tÞ

qt2
� rLk2

qu2ðL; tÞ

qt
¼ 0,

q2u3ðL; tÞ

qx2
¼ 0,

where

r ¼
ML

mL
; k1 ¼

m

EI
and k2 ¼

2o1m

EI
. (9)

To obtain the frequency equation, the denominator of the system transfer function is needed, which must
not depend on spatial coordinates. However, this operation is affected by the boundary conditions, which
depend on spatial coordinates. Hence, both temporal and spatial Laplace transformations are needed to solve
this problem. Taking the temporal and spatial Laplace transformations (refer to Appendix B for detailed
derivations) will ultimately result in a frequency equation in the form

rb cos ðbÞ sinh ðbÞ � sin ðbÞ cosh ðbÞ½ � þ 1þ cos ðbÞ cosh ðbÞ ¼ 0, (10)

where b4 ¼ (�k1s
27k2si)L

4 and i is the imaginary unit. The general format of this equation is similar to the
frequency equation of a cantilever beam with tip mass except for the fact that term b4 ¼ (�k1s

27k2si)L
4 is

replaced by b4 ¼ (�k1s
2)L4, [15–18]. It can therefore be concluded that the fundamental frequencies of a

cantilever beam with tip mass, but without rotation along longitudinal axis, can be used for the case in which
the beam rotates along its longitudinal axis. This is a valuable conclusion, which could simplify similar
analysis. This equation can also be used to determine the natural frequency of beams and shafts that rotate
along their longitudinal axis, a situation found in variety of applications such as navigation, microgyroscope
and well drills. It seems that this procedure is also applicable for other boundary conditions. Therefore, the
need to use numerical solutions for calculating the natural frequencies is omitted. Assume that one of the
solutions of Eq. (10) is when of b ¼ b0, then

k1s2 � k2siþ
b0
L

� �4

¼ 0; k2 ¼ 2o1k1 ) s ¼ �o1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b40

k1L4
þ o2

1

s0
@

1
Ai. (11)

If b0 turns out to be real, then s becomes imaginary and we have real frequencies. It can be seen from Eq. (11)
that while there is one vibration frequency for the case of a non-rotating beam, there are two frequencies for
the case of a beam with rotation. This is in agreement with similar results for rotors with gyroscopic motion as
explained next.
4. Comparison of gyroscope results with rigid rotor model

To compare the results obtained from the current analysis, a rotor with a shaft, as depicted in
Fig. 2, is taken. It must be noted that the springs in Fig. 2 correspond to the tip stiffness of the shaft
and the rotor can be assumed to be rigid. The shaft stiffness and the equivalent moment of inertia for
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the rotor are:

K ¼
3EI

L3
; I0 ¼

mL3

3
þMLL2

� �
. (12)

The resonance frequencies of this system for a case in which the shaft has equal spring constants in two lateral
directions and the rotor is rotating with speed o1 can be written as

o0 ¼ �o1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1 þ
KL2

I0

s
. (13)

Substituting Eq. (12) into Eq. (13) will yield the equivalent natural frequencies. For a case of a system with the
physical properties listed in Table 1, the equivalent frequencies from the rotor model and the fundamental
natural frequency of the vibrating beam from Eq. (10) can be compared; these are as shown in Fig. 3.

As seen from Fig. 3, the fundamental natural frequency of the vibrating beam is very close to the rotor
frequency. As the base rotational speed increases, the difference between the predictions from the two models
reduces. In Fig. 4 is shown the differences between the results of the two models shown in Fig. 3.

Fig. 5 depicts the effect of base rotational speed around the longitudinal axis of the beam on the
fundamental mode shape. Reduction in mode shape slope can be seen with increased base rotational speed.
Fig. 2. Schematics of the rotor model.

Table 1

Physical properties of the rotor and beam

Symbol Description Numerical values

L Beam or rotor length (m) 1

r Volumetric density (kg/m3) 2300

E Young’s modulus of elasticity (N/m2) 160� 109

m Beam or rotor linear density (kg/m) 0.23

ML Tip mass (kg) 0.23

I The beam moment of inertia (m4
) 8.33� 10�10
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Fig. 5. Effect of the base rotational speed around the longitudinal axis of the beam on the fundamental mode shape.
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5. Vibrating beam microgyroscope model

In Fig. 1 is a simple schematic view of a cantilever beam gyroscope. As mentioned earlier, the tip mass and
the beam constitute the main elements of the microgyroscope. Any rotation along the longitudinal axis (o1),
while the beam has lateral oscillations (u3), will induce oscillations (u2) in the normal direction. A calibrated
measurement of u2 can lead to determination of o1. As indicated in Fig. 1, the beam support can have any
possible linear motions or rotations in the frame of reference and this can affect the measurements of o1 from
u2. Therefore, a fairly accurate model is required to account for the effects of base motions on system output.

The vibrating beam is treated as an Euler–Bernoulli beam with all the displacements remaining in the elastic
zone. The longitudinal strain of the beam is also ignored relative to strains due to lateral motions. Electrostatic
forces are used to induce basic lateral oscillations, which are considered here as external effects. To derive the
governing equations of motion, the assumed mode model expansion is used as described next.

5.1. Derivation of the governing equations

By using the AMM expansion and ignoring axial strains, displacements u2 and u3 are assumed to be linear
functions of assumed modes and generalized coordinates. Thus,

u2ðx; tÞ ¼
Xn

i¼1

jiðxÞqiðtÞ; u3ðx; tÞ ¼
Xn

i¼1

jiðxÞpiðtÞ, (14)

where qi(t) and pi(t) are generalized coordinates. Substituting Eq. (14) into Eq. (6) will yield the following
governing equations:

M
d2x

dt2
þ B

dx

dt
þ Kxþ T ¼ FSxþ FD,

M ¼M1 þM2,

B ¼ B1 þ B2,

T ¼ T1 þ T2 þ R1 þ R2,

K ¼ K1 þ K2 þ K3 þ K4 þ K5 þ K6 þ K7 þ K8 þ K9, ð15Þ
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where vector x is defined as x ¼ [q|p]T and

M1 ¼
Md 0

0 Md

" #
; M2 ¼ML

F1 0

0 F1

" #
; B1 ¼ 2o1

0 �Md

Md 0

" #
,

B2 ¼ 2o1ML

0 �F1

F1 0

" #
; K8 ¼

0 ðo2o3 � _o1ÞMd

ðo2o3 þ _o1ÞMd 0

" #
,

K9 ¼ML

0 ðo2o3 � _o1ÞF1

ðo2o3 þ _o1ÞF1 0

" #
; K1 ¼

Kd 0

0 Kd

" #
,

R1 ¼
ð _V 2 � o1V3 þ o3V 1ÞR

ð _V 3 þ o1V2 � o2V 1ÞR

" #
; R2 ¼ML

ð _V 2 � o1V3 þ o3V 1ÞFL

ð _V 3 þ o1V2 � o2V 1ÞFL

" #
; K4 ¼ �o2

1M1,

K5 ¼ �o2
1M2; K6 ¼

�o2
2Md 0

0 �o2
3Md

" #
; K2 ¼ _o1

0 �Md

Md 0

" #
,

K7 ¼ML

�o2
2F1 0

0 �o2
3F1

" #
; K3 ¼ML _o1

0 �F1

F1 0

" #
,

FS ¼
f s2 FL

f s3 FL

" #
; FD ¼

f D2F1 0

0 f D3F1

" #
; T1 ¼

ð _o3 þ o1o2ÞTF

ð _o2 þ o1o3ÞTF

" #
; R ¼ R1 . . .Rn½ �T,

Kd ¼ diagðKiiÞ; Md ¼ diagðMiiÞ; F1 ¼ jðLÞjTðLÞ; TF ¼ TF1 . . .TFn½ �T,

FL ¼ jðLÞ; TFM ¼MLLFL; T2 ¼
ð _o3 þ o1o2ÞTFM

ð _o2 þ o1o3ÞTFM

" #
; j ¼ ½j1 . . .jn�

T, ð16Þ

I22 ¼ I33 ¼ I ;

Z L

0

mjiðxÞjjðxÞdx ¼ dijMii,Z L

0

EI
d2jiðxÞ

dx2

d2jjðxÞ

dx2
dx ¼ dijKii;

Z L

0

mjiðxÞdx ¼ Ri,Z L

0

mxjiðxÞdx ¼ TFi,

f e2
¼ f S2 þ f D2u2L; f e3

¼ f S3 þ f D3 u3L. ð17Þ

The definitions of some of the key matrices used in Eqs. (15) and (16) are given in Table 2.
The assumed mode model method is implemented with the properties listed in Table 1, [19,20]. The

equations of motion given in Eq. (15) were solved for different combinations of excitation and input
conditions. MATLAB was used to perform the calculations. The parameter under study is the measured value
and how it changes in each case. Results are summarized in the following subsections. The specifications for
the microgyroscope modeled as a beam are listed in Table 3.
5.2. System response to excitation frequency

The excitation frequency has a remarkable effect on the output displacement in the sensing direction. The
closer the excitation frequency is to the natural frequency of the beam, the higher the output level will be.
This effect is illustrated in Fig. 6 for four different excitation frequencies. In Fig. 6b, the excitation
frequency is equal to the natural frequency of the beam. Here, fS3, the electrostatic force in the a3 direction is
10 sinðof 3

tÞ nN, where of 3 is the frequency of the applied electrostatic force.
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Table 2

The definition of matrices used in microgyroscope Eqs. (15) and (16)

Matrices Description

M1 The distributed mass (m)

M2 The end point mass (ML)

T1 The effect of m and _o2, _o3, o1o2, o1o3

T2 The effect of ML and _o2, _o3, o1o2, o1o3

R1 The effect of m and _V2, _V3, o2V1, o3V1, o1V2, o1V3

R2 The effect of ML and _V2, _V3, o2V1, o3V1, o1V2, o1V3

K1 Stiffness matrix

K2 The effect of angular acceleration _o1, m

K3 The effect of angular acceleration _o1, ML

K4 The effect of centripetal acceleration m, o1

K5 The effect of centripetal acceleration ML, o1

K6 The effect of centripetal acceleration m, o2, o3

K7 The effect of centripetal acceleration ML, o2, o3

K8 The effect of variable input m, _o1, o2o3

K9 The effect of variable input ML, _o1, o2o3

B1 The effect of Coriolis and m

B2 The effect of Coriolis and ML

FD The effect of fD2, fD3

FS The effect of fS2, fS3

Table 3

Microgyroscope specifications

Symbol Description Numerical values

L Beam length (mm) 400

r Volumetric density (kg/m3) 2300

E Young’s modulus of elasticity (N/m2) 160� 109

m Beam linear density (kg/m) 1.803� 10�8

ML Tip mass (kg) 7.2128� 10�12

I Moment of inertia (m4) 5.1221� 10�24
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5.3. System response to excitation amplitude

In Fig. 7 the system response to four different excitation force amplitudes, all at excitation frequency
of o1 ¼ 20 rad/s, are shown. As expected, the response amplitude increases as the excitation amplitude
increases.
5.4. System response to base longitudinal rotational speed and acceleration

The gyroscope is used to measure the rotation rate around longitudinal axis. In Fig. 8 is shown
the system output for a case in which the base has a constant rotational speed along its longitudinal
axis only. It is clear that the oscillation amplitude, in the u2 direction, increases with increased rotation
rate input. It is also apparent that the excitation amplitude, in the u3 direction, does not vary with
increased base rotational speed due to constant excitation force amplitude. Note that the excitation
frequency is kept unchanged at the beam resonance frequency. In most models, these secondary
effects are ignored. However, as demonstrated here some of these effects can be very significant. The
system response to an input with zero initial rotational speed but with a constant rotational acceleration is
shown in Fig. 9.
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5.5. System response to linear acceleration input

The effect of linear accelerations is normally filtered out in oscillating beam gyroscopes. From results in
Fig. 10 it can be seen that linear accelerations _V1 and _V 3 do not affect the vibrations in the sensing direction
but _V2 is present in the response (see Fig. 11).

5.6. The cross axes effects

The cross axes effects become apparent when a combination of rotation and linear input velocities are
introduced to the gyroscope. These effects show themselves in the equations as the product of the two
elements. The most important of these products are V1�o3 and V3�o1. Results shown in Figs. 12 and 13
demonstrate some representative examples of these effects. In most aerospace applications, this can be a major
source of measurement error and needs to be eliminated for desirable performance. On the other hand, the
effect of V3�o1 as shown in Fig. 10, can be a major source of measurement error in automotive applications.

By comparing Figs. 9 and 13, it can be seen that the error due to the effect of V3 in combination with o1 is
obvious. This demonstrates that special care must be taken in devising correction strategies when input
rotational speeds are small but longitudinal speeds are relatively appreciable.
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6. Conclusions

A thorough analysis has been performed here to obtain the general equations of motion of an elastic
beam with tip mass under general base excitation. The analysis was carried out further to obtain a
closed-form solution for the frequency equation when the base has rotation around beam’s longitudinal
axis. The results were compared with those in the case of a rotating rotor with an elastic shaft.
Good agreement between the current analysis for a vibrating beam having distributed and tip masses,
and that of a rotor with an elastic shaft was obtained for a case in which beam base rotates along its
longitudinal axis.

The effects of substrate motions on the measured output from a microgyroscope, modeled as an
oscillating beam, has also been studied. The effects of changing input excitation parameters on the
performance of the gyroscope have been investigated. It was concluded that an increased excitation
amplitude at the resonance frequency can increase gyroscope output to input rotations. It was further
concluded that major sources of error in measurements from oscillating beam gyroscopes are caused by
cross axes effects resulting from a combination of lateral rotational speed and longitudinal linear speed.
Therefore, special care must be taken when microgyroscope is to be used for applications with cross axes input
conditions.
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Appendix A. Detailed derivations of the equations of motion

The Extended Hamilton’s Principle for a dynamic system is widely known and is expressed asZ t2

t1

fdT � dV þ dW ncgdt ¼ 0. (A.1)

Utilizing the expressions for kinetic and potential energies (Eqs. (3) and (5)), different components of Eq. (A.1)
can be expressed as follows.

Kinetic energy is given byZ t2

t1

dT dt ¼

Z t2

t1

Z L

0

md
1

2
T�ðx; ui;V i;oiÞ

� �
dxdtþ

Z t2

t1

MLd
1

2
T�ðL; uix¼L

;V i;oiÞ

� �
dt

¼

Z t2

t1

Z L

0

m h1dh1 þ h2dh2 þ h3dh3ð Þdxdtþ

Z t2

t1

ML h1dh1 þ h2dh2 þ h3dh3ð Þ
��
x¼L

dt
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¼

Z t2

t1

Z L

0

m h1 dV 1 þ d _u1 þ dðu3o2Þ � dðu2o3Þð Þ½ þ h2 dV2ð þ d _u2 þ dðu1o3Þ � dðu3o1Þ

þdðxo3ÞÞ þ h3 dV 3 þ d _u3 þ dðu2o1Þ � dðu1o2Þ � dðxo2Þð Þ�dxdtþ

Z t2

t1

ML h1½ dð V1 þ d _u1L

þ dðu3Lo2Þ � dðu2LoÞÞ þ h2 dð V 2 þ d _u2L þ dðu1Lo3Þ � dðu3Lo1Þ þ dðLo3ÞÞ þ h3 dð V 3
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þ d _u3L þ dðu2Lo1Þ � dðu1Lo2Þ � dðLo2ÞÞ�dt ¼

Z t2

t1

Z L

0

m �
qh1

qt
þ h2o3 � h3o2

� �
du1

�

þ �
qh2

qt
� h1o3 þ h3o1

� �
du2 þ �

qh3

qt
þ h1o2 � h2o1

� �
du3

�
dxdt



ARTICLE IN PRESS

0 0.005 0.01
-4

-3

-2

-1

0

1

2

3

4

5

0 0.005 0.01
-10

-8

-6

-4

-2

0

2

4

6

8

10

u 2
 (

µm
)

u 3
 (

µm
)

(a) (b)t (s) t (s)

Fig. 13. Induced output oscillations due to V3 � o1 ¼ 5000m=s2: (a) sense direction and (b) drive direction.

M. Esmaeili et al. / Journal of Sound and Vibration 301 (2007) 146–164 161
þ

Z t2

t1

ML �
qh1

qt
þ h2o3 � h3o2

� ��
x¼L

du1L þ �
qh2

qt
� h1o3 þ h3o1

� �
x¼L

du2L

þ �
qh3

qt
þ h1o2 � h2o1

� �
x¼L

du3L

�
dt ðA:2Þ

where uiL ¼ ui(L, t).
Potential energy is given by

Z t2

t1

dV dt ¼

Z t2

t1

d
1

2

Z L

0

EA
qu1

qx

� �2

dxþ
1

2

Z L

0

EI33
q2u2

q2x

� �2

dxþ
1

2

Z L

0

EI22
q2u3

q2x

� �2

dx

 !
dt

¼

Z t2

t1

Z L

0

EAd
qu1

qx

� �
qu1

qx
dxþ

Z L

0

EI33d
q2u2

q2x

� �
q2u2

q2x
dxþ

Z L

0

EI22d
q2u3

q2x

� �
q2u3

q2x
dx

� �
dt

¼

Z t2

t1

�

Z L

0

q
qx

EA
qu1

qx

� �
du1 dxþ EA

qu1

qx

����
x¼L

du1L þ

Z L

0

q2

q2x
EI33

q2u2

q2x

� �
du2 dx

�

�
q
qx

EI33
q2u2

q2x

� �����
x¼L

du2L þ EI33
q2u2

q2x

����
x¼L

q
qx
ðdu2LÞ þ

Z L

0

q2

q2x
EI22

q2u3

q2x

� �
du3 dx

�
q
qx

EI22
q2u3

q2x

� �����
x¼L

du3L þ EI22
q2u3

q2x

����
x¼L

q
qx
ðdu3LÞ

�
dt ðA:3Þ

and finally the virtual work of non-conservative forces are given by

dW nc ¼ f e2
du2L þ f e3

du3L, (A.4)

where f e2
and f e3

are applied electrostatic forces at the end of the beam in directions a2 and a3, respectively.
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By using Eqs. (A.2)–(A.4) and taking into account the fact that variations du1L, du2L, du3L,
ðq=qsÞdu1L, ðq=qsÞdu2L, ðq=qsÞdu3L and du1, du2, du3, du1L could have any arbitrary values; the coefficients
of these expressions in Hamilton’s equation must vanish. Consequently, the system governing
equations along with the boundary conditions (at the tip) are as given in Eq. (6) in the main body of
the paper.
Appendix B. Detailed derivations of frequency equation

Taking the temporal and spatial Laplace transformations of Eq. (9) in terms of Laplace parameters s and p

yields

p4ū2ðp; sÞ þ k1s
2ū2ðp; sÞ � k2sū3ðp; sÞ � p3ū2ð0; sÞ,

� p2ū02ð0; sÞ � pū002ð0; sÞ � ū0002 ð0; sÞ ¼ 0,

p4ū3ðp; sÞ þ k1s
2ū3ðp; sÞ þ k2sū2ðp; sÞ � p3ū3ð0; sÞ,

� p2ū03ð0; sÞ � pū003ð0; sÞ � ū0003 ð0; sÞ ¼ 0, ðB:1Þ

where notations ū02ð0; sÞ ¼ ðqū2ðx; sÞÞ=qx
��
x¼0

, ū002ð0; sÞ ¼ ðq
2ū2ðx; sÞÞ=qx2

��
x¼0

, y, have been utilized in Eq. (B.1)
for a more compact representation of the equations. If the beam support is assumed to be fixed in the moving
coordinate system {ai}, then taking the temporal Laplace yields

ū2ð0; sÞ ¼ 0; ū02ð0; sÞ ¼ 0; ū3ð0; sÞ ¼ 0; ū03ð0; sÞ ¼ 0. (B.2)

Substituting Eq. (B.2) into Eq. (B.1) and further simplifications yields:

ū2ðp; sÞ ¼
k2sAþ ðp4 þ k1s2ÞB

ðp4 þ k1s2Þ
2
þ k2

2s
2
,

ū3ðp; sÞ ¼
ðp4 þ k1s

2ÞA� k2sB

ðp4 þ k1s2Þ
2
þ k2

2s
2
,

A ¼ pū003ð0; sÞ þ ū0003 ð0; sÞ; B ¼ pū002ð0; sÞ þ ū0002 ð0; sÞ, ðB:3Þ

where ū003ð0; sÞ, ū0003 ð0; sÞ, ū0002 ð0; sÞ and ū002ð0; sÞ are yet to be determined. Taking the inverse spatial Laplace
transformation of Eq. (B.3) will result in

ū2ðx; sÞ ¼ k2s f 01ū
00
3ð0; sÞ þ f 1ū

000
3 ð0; sÞ

� 	
þ f 02ū

00
2ð0; sÞ þ f 2ū0002 ð0; sÞ

� 	
,

ū3ðx; sÞ ¼ f 02ū003ð0; sÞ þ f 2ū0003 ð0; sÞ
� 	

� k2s f 01ū
00
2ð0; sÞ þ f 1ū0002 ð0; sÞ

� 	
,

f 1ðx; sÞ ¼ I
p

�1 1

ðp4 þ k1s2Þ2 þ k2
2s

2

 !
,

f 2ðx; sÞ ¼ I
p

�1 p4 þ k1s2

ðp4 þ k1s2Þ2 þ k2
2s

2

 !
. ðB:4Þ

Taking the temporal Laplace transformation of the boundary conditions given in Eq. (9) with zero initial
conditions will also yield:

ū0002 ðL; sÞ � rLk1s
2ū2ðL; sÞ þ rLk2sū3ðL; sÞ ¼ 0,

ū002ðL; sÞ ¼ 0,

ū0003 ðL; sÞ � rLk1s
2ū3ðL; tÞ � rLk2sū2ðL; sÞ ¼ 0,

ū003ðL; sÞ ¼ 0. ðB:5Þ
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Substituting expressions (B.4) into Eq. (B.5) will result in a system of four homogenous equations in terms of
u003ð0; sÞ, u0003 ð0; sÞ, u0002 ð0; sÞ and u002ð0; sÞ:

f 0002 f 00002 � rLk1s2f 02 � rLk2
2s

2f 01 �k2sf 0001 k2sð�f 00001 þ rLk1s2f 01 � rLf 02Þ

f 002 f 0002 � rLk1s
2f 2 � rLk2

2s2f 1 �k2sf 001 k2sð�f 0001 þ rLk1s
2f 1 � rLf 2Þ

k2sf 0001 k2sðf
0000
1 � rLk1s

2f 01 þ rLf 02Þ f 0002 f 00002 � rLk1s
2f 02 � rLk2

2s
2f 01

k2sf 001 k2sðf
000
1 � rLk1s

2f 1 þ rLf 2Þ f 002 f 0002 � rLk1s2f 2 � rLk2
2s

2f 1

2
66664

3
77775

T
ū002ð0; sÞ

ū0002 ð0; sÞ

ū003ð0; sÞ

ū0003 ð0; sÞ

2
66664

3
77775 ¼

0

0

0

0

2
6664
3
7775. (B.6)

To obtain a non-trivial solution for the unknowns in Eq. (B.6), the determinant of the coefficients matrix must
vanish. Moreover, the determinant of the coefficients is actually the denominator of the transfer function
obtained from the temporal Laplace transformation. Hence, some values can be found for ‘‘s’’ that makes the
determinant equal to zero. The imaginary part of the roots of this equation is actually the principle mode
frequencies of the system. The determinant of the coefficients is given by

Det ¼ ðrg4 sin b cosh bþ rl4i sin b cosh b� rg4 sinh b cos b� rl4i sinh b cos b

þ b3 cosh b cos bþ b3Þðrg4 sin a cosh a� rl4i sin a cosh a� rg4 sinh a cos a

þ rl4i sinh a cos aþ a3 cosh a cos aþ a3Þ, ðB:7Þ

where

a4 ¼ � g4 þ l4i; b4 ¼ �g4 � l4i; i ¼
ffiffiffiffiffiffiffi
�1
p

,

g4 ¼ k1s
2; l4 ¼ k2s; r ¼

ML

mL
; k1 ¼

m

EI
; and k2 ¼

2o1m

EI
. ðB:8Þ

Equating Eq. (B.7) to zero, the characteristic equation of the system in terms of s can be obtained in which the
imaginary part of the roots will result in the frequencies. Eq. (B.7) can then be simplified as given by Eq. (10)
in the text.
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